On the Basis Property for the Root Vectors of Some Nonselfadjoint Operators*
نویسندگان
چکیده
M here and in the sequel denotes various constants, and 1 ?“I the norm of operator T on H. Under assumptions (1 ), (2) the operator A = L + T has a discrete spectrum, that is, every point of its spectrum is an eigenvalue of tinite algebraic multiplicity. If 1 is an eigenvalue of A, then the linear hull of the corresponding eigenvectors is called the eigenspace corresponding to d. Let h, be an eigenvector, Ahj = 13.hj. If the equation Ah,!” = A@” + hj is solvable then the chain {h. /z(i) ,..., hjSj)}, AhfSj) = A/z,!~‘) + /zjSj-lF is called the Jordan chain correspondi& ;o the pair (A, hj). The number sj + 1 is called the length of this chain if the equation Ah Ah = h, tS~) has no solutions. If 1 has a finite algebraic multiplicity then sj < 00. The vectors hjrn) are called root vectors (or associated vectors). The union of eigen and root vectors is called the root system of A. A system { gj}j”, , of vectors is called linearly independent if any
منابع مشابه
Nonselfadjoint Operators Generated by the Equation of a Nonhomogeneous Damped String
We consider a one-dimensional wave equation, which governs the vibrations of a damped string with spatially nonhomogeneous density and damping coefficients. We introduce a family of boundary conditions depending on a complex parameter h. Corresponding to different values of h, the problem describes either vibrations of a finite string or propagation of elastic waves on an infinite string. Our m...
متن کاملOn the basis property of the root function systems of regular boundary value problems for the Sturm-Liouville operator
We consider the nonselfadjoint Sturm-Liouville operator with regular but not strongly regular boundary conditions. We examine the basis property of the root function system of the mentioned operator. In the present paper we study eigenvalue problems for the nonselfadjoint Sturm-Liouville operator Lu = u′′ − q(x)u (1) defined on the interval (0, 1), where q(x) is an arbitrary complex-valued func...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملMulti-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
متن کامل